Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Database star-join optimization for multicore CPU and GPU platforms
LIU Zhuan, HAN Ruichen, ZHANG Yansong, CHEN Yueguo, ZHANG Yu
Journal of Computer Applications    2021, 41 (3): 611-617.   DOI: 10.11772/j.issn.1001-9081.2020091430
Abstract599)      PDF (1026KB)(834)       Save
Focusing on the high execution cost of star-join between the fact table and multiple dimension tables in On-line Analytical Processing (OLAP), a star-join optimization technique was proposed for advanced multicore CPU (Central Processing Unit) and GPU (Graphics Processing Unit). Firstly, the vector index based vectorized star-join algorithm on CPU and GPU platforms was proposed for the intermediate materialization cost problem in star-join in multicore CPU and GPU platforms. Secondly, the star-join operation based on vector granularity was presented according to the vector division for CPU cache size and GPU shared memory size, so as to optimize the vector index materialization cost in star-join. Finally, the compressed vector index based star-join algorithm was proposed to compress the fixed-length vector index to the variable-length binary vector index, so as to improve the storage access efficiency of the vector index in cache under low selection rate. Experimental results show that the vectorized star-join algorithm achieves more than 40% performance improvement compared to the traditional row-wise or column-wise star-join algorithms on multicore CPU platform, and the vectorized star-join algorithm achieves more than 15% performance improvement compared to the conventional star-join algorithms on GPU platform; in the comparison with the mainstream main-memory databases and GPU databases, the optimized star-join algorithm achieves 130% performance improvement compared to the optimal main-memory database Hyper, and achieves 80% performance improvement compared to the optimal GPU database OmniSci. It can be seen that the vector index based star-join optimization technique effectively improves the multiple table join performance, and compared with the traditional optimization techniques, the vector index based vectorized processing improves the data storage access efficiency in small cache, and the compressed vector further improves the vector index access efficiency in cache.
Reference | Related Articles | Metrics